Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Depression, anxiety and stress symptoms among diabetics in Malaysia: a cross sectional study in an urban primary care setting

  • Gurpreet Kaur1Email author,
  • Guat Hiong Tee1,
  • Suthahar Ariaratnam2,
  • Ambigga S Krishnapillai2 and
  • Karuthan China3
BMC Family Practice201314:69

https://doi.org/10.1186/1471-2296-14-69

Received: 22 February 2013

Accepted: 22 May 2013

Published: 27 May 2013

Abstract

Background

Diabetes mellitus is a highly prevalent condition in Malaysia, increasing from 11.6% in 2006 to 15.2% in 2011 among individuals 18 years and above. Co-morbid depression in diabetics is associated with hyperglycemia, diabetic complications and increased health care costs. The aims of this study are to determine the prevalence and predictors of depression, anxiety and stress symptoms in Type II diabetics attending government primary care facilities in the urban area of Klang Valley, Malaysia.

Methods

The study was cross sectional in design and carried out in 12 randomly selected primary care government clinics in the Klang Valley, Malaysia. A total of 2508 eligible consenting respondents participated in the study. The Depression, Anxiety and Stress Scale (DASS) 21 questionnaire was used to measure depression, anxiety and stress symptoms. Data was analyzed using the SPSS version 16 software using both descriptive and inferential statistics.

Results

The prevalence of depression, anxiety and stress symptoms among Type II diabetics were 11.5%, 30.5% and 12.5% respectively. Using multiple logistic regression, females, Asian Indians, marital status (never married, divorced/widowed/separated), a family history of psychiatric illness, less than 2 years duration of diabetes and current alcohol consumption were found to be significant predictors of depression. For anxiety, unemployment, housewives, HbA1c level of more than 8.5%, a family history of psychiatric illness, life events and lack of physical activity were independent risk factors. Stress was significantly associated with females, HbA1c level of more than 8.5%, presence of co-morbidity, a family history of psychiatric illness, life events and current alcohol consumption. For depression (adjusted OR 2.8, 95% CI 1.1; 7.0), anxiety (adjusted OR 2.4, 95% CI 1.1;5.5) and stress (adjusted OR 4.2, 95% CI 1.8; 9.8), a family history of psychiatric illness was the strongest predictor.

Conclusion

We found the prevalence of depression, anxiety and stress symptoms to be high among Type II diabetics, with almost a third being classified as anxious. Screening of high risk Type II diabetics for depression, anxiety and stress symptoms in the primary care setting is recommended at regular intervals.

Keywords

Depression Anxiety Stress Prevalence Predictors Diabetes Outpatients Urban Malaysia

Background

Diabetes and depression are two of the commonest public health problems affecting people all over the world. About 220 million people are estimated to be suffering from diabetes, majority of the burden being in low and middle income countries (LMIC) [1]. Diabetes is also responsible for about 1.256 million deaths globally in 2008, with most deaths occurring in LMIC. Unipolar depressive disorders and diabetes were ranked 3rd and 19th respectively as leading causes of disability adjusted life years (DALYs) in 2004. The former also being the leading cause of years lost due to disability (YLD). Unipolar depressive disorders are in fact projected to be the leading cause of disease burden by 2030.

In Malaysia, a middle income country, the prevalence of diabetes has increased in the last decade from 5.7% to 9.5% among individuals aged 30 years and above [2] and from 11.6% in 2006 to 15.2% in 2011 among individuals 18 years and older[3]. Of the estimated 2.6 million diabetics in Malaysia, about 715,550 (27.5%) diabetics are originating from the most populous regions in Malaysia namely the state of Selangor and the Federal Territory of Kuala Lumpur [3]. In terms of leading causes of total YLD, the Malaysian National Burden of Disease and Injury Study 2004 ranked diabetes mellitus as the third leading cause in both males (6.0%) and females (7.2%) respectively, while unipolar major depression was ranked as second and top most leading cause in males (7.2%) and females (12.7%) respectively [4].

It is well recognized that many individuals with chronic illnesses also have co-morbid unrecognized mental health disorders [5]. The International Federation of Diabetes has stressed the importance of integrating psychological care in the management of diabetes [6].

It has been estimated that the risk of getting depression in the general population is 10-25% in females and 5 – 12% in males. For individuals with chronic illnesses, the risk is higher at 25 – 33% [7]. Studies have shown that diabetics have a higher prevalence of depression than non-diabetic populations [810]. Globally, an estimated 43 million diabetics have symptoms of depression [5]. Also, diabetes is associated with anxiety disorders [11]. Being diagnosed with diabetes is a life stressor by itself. It requires a large number of physical and mental accommodations. Depression adds to the burden of managing diabetes. Furthermore, health care utilization and costs [1214] increase with the coexistence of diabetes and major depression.

Depression and anxiety are associated with hyperglycemia [1517]. While depression is associated with diabetes complications [18, 19] and increased functional disability [20, 21]. Co-morbid depression has also been shown to be associated with poor adherence to diabetes medication and dietary regimens [16, 22, 23] and reduced quality of life [24, 25]. Several studies have shown the risk of mortality to be increased by depression [2629]. The PROSPECT trial has shown that the five year risk of mortality was reduced with a depression management care program among diabetics compared to similar patients with usual care practices [30].

In Malaysia, there is paucity of epidemiological estimates on the prevalence, characterization and risk factors of depression, anxiety and stress among diabetics. An estimate of the prevalence of these conditions is the first step towards priority setting and the planning, implementation and evaluation of a depression management intervention program in diabetes care in the primary care setting. This study was carried out with the aims of determining the prevalence of depression, anxiety and stress, and its predictors among Type II diabetic outpatients attending government primary care clinics in the Klang Valley.

Methods

This was a cross sectional study carried out in 12 selected government primary care clinics located in the Klang Valley.

Study location

The Klang Valley generally refers to the urban areas of Kuala Lumpur, its suburbs and adjoining areas in the state of Selangor. To the North and East, it is demarcated by the Titiwangsa Mountain range, while to the West by the Straits of Malacca. The estimated population of the Klang Valley is 7.5 million [31]. The two federal territories of Kuala Lumpur and Putrajaya as well as five districts from the state of Selangor (Sepang, Hulu Langat, Gombak, Klang and Petaling) were included in the study. In each of these localities the number of clinics ranged from 1 to 13 with a total of 45 clinics.

Sample size and sampling

Sample size was calculated using both the population survey method for prevalence and for comparing two proportions using the Sample Size Calculator for Prevalence Studies [32] and the PS Software [33] respectively. The larger minimum sample size required based on both these methods was taken as the sample size for the whole study. Based on 80% study power, Type I error of 0.05, design effect of 2, a difference of 8% in two groups and a non-response of 20%, a sample size of 2261 was required.

For sampling, a two stage stratified sampling technique was employed. About 25% of the total number of clinics from each locality (with a minimum of one clinic) was randomly selected, giving a total of 12 clinics from the study area. The sample size was then proportionately distributed based on the number of clinics selected from each locality. For three localities where only one single clinic was selected, the minimum sample size was increased to at least 250 to enable clinic level analyses in future. The final minimum sample size for the study was 2446.

Study procedure

All patients attending the diabetic clinics during the study period were screened for eligibility to participate. The inclusion criteria were age 30 years and above, having Type II diabetes of at least six months (verified with medical records) and being literate in Malay (which is the official language of the country) or English. Patients with a known medically diagnosed psychiatric illness in the past (verified with medical records) or with any form of cognitive impairment such as dementia or mental retardation and females in the post-partum period were excluded. Eligible patients were then approached for written consent for the study. Prior to obtaining consent, all potential respondents were explained about the purpose of the study and the relevant procedures involved. They were assured that their blood results would be notified eventually to their attending physician. Subsequently, only consenting patients were recruited in the study.

Ethical issues

Ethical approval for the study was obtained from the Medical Research Ethics Committee, Ministry of Health Malaysia (NIHSEC 08/0809/P09). Permission to conduct the study was also obtained from the State Health Directors as well as Medical and Health Officers in charge of the selected clinics prior to the study.

Data collection tools and measurements

Socio-demographic and other relevant information were collected by five trained interviewers via face-to-face interview. Depression, anxiety and stress symptoms were measured using a self-administered short version of the Depression, Anxiety and Stress Scale (DASS), i.e., DASS 21 (Additional file 1: DAS S 21). The short version has 21 items which are divided into 7 items each assessing the symptoms of depression, anxiety and stress respectively. The DASS has been shown to have high internal consistency. The validated Malay or Bahasa Malaysia version of DASS 21 was used in this study [34]. Respondents were asked to rate their experience on each symptom over the past week on a 4-point severity scale ranging from 0 (does not apply to me), to 3 (applies to me most or all of the time). Scores for each scale were later summed up and categorized as normal, mild, moderate, severe and extremely severe according to the DASS Manual [35].

The following anthropometric and blood assay measurements were also taken:

Height and weight for Body Mass Index (BMI) - Both parameters were measured twice with the patient standing bare footed. Height (to the nearest centimeter) was measured with fixed stadiometers (Seca, Vogel & Halke, Germany) and weight (to the nearest 0.1 kilogram) was measured using an electronic floor weighing scale (Tanita HD 319 Personal Scale, Australia). BMI was classified according to the World Health Organisation guidelines [36].

Waist circumference (WC) - Measured twice using a standard tape measure as described by the National Institutes of Health (NIDDK) [37]. Abdominal obesity was defined by a waist circumference of ≥90 cm for men and ≥80cm for women [38].

Total Serum Cholesterol (TC) - Measured using the Accutrend GCT (Roche Diagnostics, Germany) from a single finger prick.

HbA1c level - Measured using the DCA Vantage Analyser (Siemens Healthcare Diagnostics Inc, USA) from the same single finger prick.

For all the measurements except TC and HbA1c an average of two readings was taken for analyses. Variables were categories based on clinical and statistical reasoning.

Pre-test and pilot study

A pre-test was conducted on 40 Type II diabetic patients selected conveniently from a government primary care facility which was not included in the study. This was purposively done to test the study questionnaire. The pilot study was then conducted after the pre-test in two other government health facilities that were also not selected for the study. The logistics and feasibility of conducting the study were explored. Weaknesses that were identified from the pre-test and pilot study were rectified.

Data management and statistical analysis

All questionnaires were checked for completeness of response at the clinic and attempts were made to improve the response rate for missing items. Data was entered manually into a database and cleaned before analyses. The Statistical Package for the Social Science (SPSS) version 16 software was used for both descriptive and inferential analysis. Items that were not answered by respondents were considered as missing. Univariate statistics such as mean values, standard deviations, frequencies and proportion percentages were derived for continuous and categorical variables respectively. Bivariate and multivariate analyses were used to measure the strength of association between the variables in the study and identify predictors for the outcomes of interest respectively. All tests were two-tailed with significance defined as p < 0.05. Odds ratios (OR) along with 95% confidence levels (CI) were derived where appropriate.

Results

Out of 2774 eligible patients approached, 2508 subjects were successfully recruited, giving a response rate of 90.4%.

Socio-demographic, clinical and other characteristics of sample population

Majority of the respondents were between 50 to 59 years old (35.5%), females (61.1%), Malays (51.2%) and married (81.7%). Almost 40% had some form of secondary education and one third earned a monthly household income (MHI) of MYR 1,000 to 1,999. Slightly over one third of respondents were gainfully employed. The mean age and MHI was about 57 (56.6 ± SD 10.67) years and MYR 2,000 (1,974.6 ± SD 1,869.12) respectively (Table 1).
Table 1

Frequency distribution of respondents by socio-demographic characteristics and selected variables

Demographic characteristics (n=2508)

Mean

SD

n

Percentage (%)

Age (years)

56.6

10.67

  

30 – 39

  

158

6.3

40 – 49

  

458

18.3

50 – 59

  

891

35.5

60 – 69

  

728

29.0

70 – 79

  

238

9.5

≥ 80

  

35

1.4

Sex

    

Male

  

975

38.9

Female

  

1533

61.1

Ethnicity a

    

Malay

  

1282

51.2

Chinese

  

438

17.5

Asian Indian

  

787

31.3

Highest Educational Level

    

None

  

285

11.4

Never completed primary school

  

423

16.9

Completed primary school

  

519

20.7

Never completed secondary school

  

462

18.4

Completed secondary school

  

523

20.9

A-Level/STPM/HSC

  

184

7.3

Tertiary

  

112

4.5

Monthly household income (MHI) in Malaysian Ringgit (MYR b )

1,974.6

1,869.12

  

< 400

  

114

4.5

400 – 699

  

277

11.0

700 – 999

  

313

12.5

1000 – 1999

  

798

31.8

2000 – 2999

  

510

20.3

3000 – 3999

  

207

8.3

4000 – 4999

  

105

4.2

≥ 5000

  

184

7.3

Marital Status

    

Never married

  

71

2.8

Married/Cohabiting

  

2048

81.7

Divorced/Separated/Widowed

  

389

15.5

Current Job Status

    

Civil servant

  

227

9.0

Private Sector employee

  

448

17.8

Self-employed

  

171

6.8

Government retiree

  

210

8.4

Private retiree

  

158

6.3

Studying and working

  

2

0.2

Student

  

2

0.1

Housewife

  

781

31.1

Unemployed

  

509

20.3

BMI (kg/m 2 )

27.83

5.395

  

Underweight (< 18.5)

  

28

1.1

Normal (≥ 18.5 - < 25.0)

  

751

29.9

Overweight (≥ 25.0 - < 30.0)

  

1034

41.2

Obese (≥ 30.0)

  

695

27.7

Abdominal Obesity

    

No

  

540

21.5

Yes

  

1968

78.5

Serum Cholesterol (mmol/l)

5.03

0.878

  

< 5.2

  

1767

70.5

≥ 5.2

  

741

29.5

HbA1c (%) a

8.36

2.038

  

≤8.5

  

1537

61.3

>8.5

  

970

38.7

Duration of Diabetes (years)

7.7

6.26

  

< 2 yrs

  

206

8.2

2 - < 10 yrs

  

1521

60.6

10 - < 20 yrs

  

586

23.4

≥ 20 yrs

  

195

7.8

Co-morbidity c

    

No

  

530

21.1

Yes

  

1978

78.9

Psychiatric illness in family

    

No

  

2484

99.0

Yes

  

24

1.0

Diabetes in family

    

No

  

661

26.4

Yes

  

1847

73.6

Life events within the last 6 months

    

No

  

1373

54.7

Yes

  

1135

45.3

Smoking status

    

Non-smoker

  

2089

83.3

Former smoker

  

160

6.4

Current smoker

  

259

10.3

Alcohol Consumption Status‡

    

Lifetime abstainer

  

2326

92.7

Former drinker

  

88

3.5

Current drinker

  

94

3.8

Leisure-time Physical Activity Status§

    

Regular activity

  

793

31.6

Some activity

  

483

19.3

Inactive

  

1232

49.1

Life events within the last 6 months

    

No

  

1373

54.7

Yes

  

1135

45.3

a one missing data.

b1 USD is approximately 3 MYR.

c Co-morbidity –any chronic co-morbid condition present.

Non-smoker - Respondent who reported to have never smoked at least 100 cigarettes in his lifetime.

Current smoker- Respondents who reported to have smoked 100 or more cigarettes in his lifetime and currently smoked daily or some days.

Former smoker - Respondents who reported to have smoked 100 or more cigarettes in his lifetime but not smoking currently.

‡ a) Current drinker – persons who have had at least 12 drinks in their lifetime and at least one drink in the previous year.

b) Former drinker - persons who have had ≥12 drinks in their lifetime, but no drinks in the past year.

c) Lifetime abstainer – had < 12 drinks in his/her entire lifetime.

§a) Inactive – did not report any sessions of light to moderate or vigorous leisure-time physical activity of at least 10 minutes or reported they were unable to perform leisure-time physical activity.

b) Some leisure-time activity – at least 1 session of light to moderate or vigorous activity of at least 10 minutes in duration but did not meet the requirement of regular leisure-time activity.

c) Regular leisure-time activity – at least 3 sessions per week of vigorous leisure-time activity lasting at least 20 minutes or at least 5 sessions per week of light to moderate physical activity lasting at least 30 minutes or both.

¶ Life events – any sudden change in one’s life whether desirable or undesirable.

Over 41% of the respondents were overweight while almost twice the proportion had abdominal obesity. Almost 30% and 40% of the respondents had an elevated TC level of >5.2 mmol and HbA1c of >8.5% respectively. Majority (61%) were diagnosed as having diabetes for 2 - <10 years (Table 1).

Almost 80% reported having at least one co-morbid condition. Majority reported having at least one family member with diabetes (73.6%) while only 1% reported having a history of mental illness in the family. As for life events, about 45% reported experiencing at least one life event in the past 6 months. Current smokers and current alcohol drinkers comprised 10% and 4% of the respondents respectively. Almost half of the respondents were classified as physically inactive (49.1%).

Depression, anxiety and stress

Overall, the prevalence of depression, anxiety and stress symptoms were 11.5%, 30.5% and 12.5% respectively. On bivariate analysis using binary logistic regression, depression was found to be significantly associated with sex, ethnicity, educational level, MHI, marital status, current job status, duration of diabetes and family history of psychiatric illness (Table 2).
Table 2

Frequency distribution of respondents by depression status and socio-demographic characteristics and other selected variables

Variables

Depression symptoms

P

cOR

95% CI

No (n)

(%)

Yes (n) ‡

(%)

Lower

Upper

Age (Years)

    

0.593

   

30 – 39*

138

87.3

20

12.7

-

-

-

-

40 - 49

407

88.3

54

11.7

0.752

0.915

0.53

1.58

50 - 59

796

89.5

93

10.5

0.413

0.806

0.48

1.35

60 – 69

645

88.6

83

11.4

0.655

0.888

0.53

1.50

70 - 79

205

86.9

33

13.1

0.730

1.111

0.61

2.02

≥ 80

28

82.4

6

17.6

0.443

1.479

0.55

4.01

Sex

        

Male*

886

90.9

89

9.1

-

-

-

-

Female

1332

87.0

200

13.0

0.030

1.49

1.15

1.94

Ethnicity (n=2507)

    

0.006

   

Malay*

1155

90.1

127

9.9

 

-

-

-

Chinese

390

89.0

48

11.0

0.529

1.12

0.79

1.59

Asian Indian

673

85.5

114

14.5

0.002

1.54

1.18

2.02

Educational Level

    

0.006

   

None

231

81.9

54

18.1

0.001

2.24

1.37

3.65

Primary education

837

88.9

105

11.1

0.414

1.20

0.77

1.86

Secondary education

883

89.6

102

10.4

0.655

1.11

0.71

1.72

Tertiary education*

268

90.5

28

9.5

-

-

-

-

Monthly household income (MHI) in Malaysian Ringgit (MYR)

    

0.006

   

< 1,000

92

80.7

22

19.3

0.001

1.90

1.28

2.80

1,000 -< 3,000

238

85.9

39

14.1

0.021

1.54

1.07

2.23

≥ 3,000*

276

88.2

37

11.8

-

-

-

-

Marital Status

    

0.000

   

Never married

55

77.5

16

22.5

0.001

2.72

1.53

4.83

Divorced/widowed/separated

1850

90.3

198

9.7

0.000

2.23

1.67

2.99

Married*

314

80.7

75

19.3

-

-

-

-

Current Job Status

    

0.013

   

Unemployed

438

85.4

75

14.6

0.005

1.62

1.16

2.26

Housewives

682

87.3

99

12.7

0.047

1.37

1.00

1.82

Retired

334

90.8

34

9.2

0.855

0.96

0.63

1.46

Employed*

765

90.4

81

9.6

-

-

-

-

BMI (kg/m 2 )

    

0.207

   

< 25.0*

686

88.1

93

11.9

-

-

-

-

≥ 25.0

928

89.7

106

10.3

0.256

0.84

0.63

01.13

≥30.0

605

87.1

90

12.9

0.557

1.10

0.81

1.50

Abdominal Obesity

        

No *

484

89.6

56

10.4

-

-

-

-

Yes

1735

88.2

233

11.8

0.344

1.16

0.85

1.58

Sr. Cholesterol level (mmol/l)

        

<5.2*

1555

88.0

212

12.0

-

-

-

-

≥ 5.2

664

89.6

77

10.4

0.251

0.85

0.65

1.12

HbA1c level (%)

        

≤8.5 *

1369

89.1

168

10.9

-

-

-

-

>8.5

849

87.5

121

12.5

0.239

1.16

0.91

1.49

Duration of diabetes (years)

        

< 2

173

84.0

33

16.0

0.036

1.53

1.03

2.26

≥ 2*

2046

88.9

256

11.1

-

-

-

-

Co-morbidity

        

No*

466

87.9

64

12.1

-

-

-

-

Yes

1753

88.6

225

11.4

0.654

0.94

0.70

1.26

Psychiatric illness in family

        

No*

2202

88.6

282

11.4

-

-

-

-

Yes

17

70.8

7

29.2

0.010

3.22

1.32

7.82

Diabetes in family

        

No*

582

88.0

79

12.0

-

-

-

-

Yes

1637

88.6

210

11.4

0.688

0.945

0.718

1.245

Life events within the past 6 months

        

No*

1221

88.9

152

11.1

-

-

-

-

Yes

998

87.9

137

12.1

0.435

1.103

0.863

1.410

Smoking status

    

0.550

   

Non smoker*

1842

88.2

247

11.8

-

-

-

-

Former smoker

143

89.4

17

10.6

0.304

0.797

0.517

1.229

Current smoker

234

90.3

25

9.7

0.650

0.887

0.527

1.491

Current drinker

        

No*

2140

88.6

274

11.4

-

-

-

-

Yes

79

84.0

15

16.0

0.173

1.48

0.84

2.61

Leisure-time physical activity level

        

Inactive

1077

87.4

155

12.6

0.103

1.23

0.96

1.57

Active*

1142

89.5

134

10.5

-

-

-

-

cOR –Crude odds ratio.

*- Reference group.

- Scores of 0–9 (normal).

‡ − Scores of ≥ 10 (mild, moderate, severe, extremely severe).

For anxiety, all socio-demographic variables; females, Asian Indian, no formal education, MHI of MYR < 3,000, divorcees/widowers, housewives and unemployment were significant. In addition, HbA1c >8.5%, ≥ 2 years duration of diabetes, presence of psychiatric illness in the family, life events and physical inactivity were also significantly associated (Table 3).
Table 3

Frequency distribution of respondents by anxiety status and socio-demographic characteristics and other selected variables

Variables

Anxiety symptoms

P

cOR

95% CI

No (n)

(%)

Yes (n) ‡

(%)

Lower

Upper

Age (Years)

    

0.006

   

30 – 39*

102

64.6

56

35.4

-

-

-

-

40 - 49

341

74.2

119

25.8

0.021

0.63

0.43

0.93

50 - 59

628

70.6

261

29.4

0.126

0.76

0.53

1.08

60 – 69

504

69.2

224

30.8

0.253

0.81

0.56

1.16

70 - 79

144

60.5

94

39.5

0.416

1.19

0.78

1.80

≥ 80

22

64.7

12

35.3

0.987

0.99

0.46

2.16

Sex

        

Male*

710

72.8

265

27.2

-

-

-

-

Female

1032

67.3

501

32.7

0.004

1.30

1.09

1.55

Ethnicity

    

0.022

   

Malay*

911

71.0

372

29.0

-

-

-

-

Chinese

314

71.7

124

28.3

0.778

0.97

0.76

1.23

Asian Indian

516

65.7

270

34.3

0.012

1.28

1.06

1.55

Educational Level

    

0.070

   

None

184

64.6

101

35.4

0.045

1.43

1.01

2.04

Primary education

629

66.8

313

33.2

0.076

1.30

0.97

1.73

Secondary education

715

72.6

270

27.4

0.922

0.99

0.74

1.32

Tertiary education*

214

72.3

82

27.7

-

-

-

-

Monthly household income (MHI) in Malaysian Ringgit (MYR)

    

0.001

   

< 1,000

457

64.9

247

35.1

0.000

1.64

1.27

2.12

1,000 -< 3,000

912

69.7

396

30.3

0.022

1.32

1.04

1.67

≥ 3,000*

373

75.2

123

24.8

-

-

-

-

Marital Status

    

0.010

   

Never married

52

73.2

19

26.8

0.626

0.88

0.51

1.49

Divorced/widowed/separated

1445

70.6

603

29.4

0.003

1.41

1.12

1.77

Married*

245

63.0

144

37.0

-

-

-

-

Current Job Status

    

0.000

   

Unemployed

315

61.4

198

38.6

0.000

1.86

1.47

2.35

Housewives

530

67.9

251

32.1

0.002

1.40

1.13

1.74

Retired

265

72.0

103

28.0

0.326

1.15

0.87

1.51

Employed*

632

74.7

214

25.3

-

-

-

-

BMI (kg/m 2 )

    

0.472

   

< 25.0*

529

67.9

250

32.1

-

-

-

-

≥ 25.0

721

69.7

313

30.3

0.407

0.92

0.75

1.12

≥ 30.0

492

70.8

203

29.2

0.023

0.87

0.70

1.09

Abdominal Obesity

        

No*

373

69.1

167

30.9

-

-

-

-

Yes

1369

69.6

599

30.4

0.827

0.98

0.80

1.20

Sr. Cholesterol level (mmol/l)

        

<5.2*

1215

68.8

552

38.2

0.242

0.90

0.74

1.08

≥ 5.2

527

71.1

214

28.9

-

-

-

-

HbA1c level (%)

        

≤8.5*

1101

71.6

436

28.4

-

-

-

-

>8.5

641

66.1

329

33.9

0.003

1.30

1.09

1.54

Duration of DM (years)

        

< 2

158

76.7

48

23.3

0.019

1.49

1.07

2.09

≥ 2*

1584

68.8

718

31.2

-

-

-

-

Co-morbidity

        

No*

382

72.1

148

27.9

-

-

-

-

Yes

1360

68.8

618

31.2

0.141

1.17

0.95

1.45

Psychiatric illness in family

        

No*

1730

69.6

754

30.4

0.043

2.29

1.03

5.13

Yes

12

50.0

12

50.0

-

-

-

-

Diabetes in family

        

No*

477

72.2

184

37.8

0.079

1.19

0.98

1.45

Yes

1265

68.5

582

31.5

-

-

-

-

Life events within the past 6 months

        

No*

996

72.5

377

27.5

-

-

-

-

Yes

746

65.7

389

34.3

0.000

1.38

1.16

1.63

Smoking status

    

0.064

   

Non smoker*

1433

68.6

656

31.4

-

-

-

-

Former smoker

186

71.8

73

28.2

0.030

0.66

0.45

0.96

Current smoker

123

76.9

37

23.1

0.292

0.86

0.64

1.14

Current drinker

        

No*

1677

69.5

737

30.5

-

-

-

-

Yes

65

69.1

29

30.9

0.947

1.015

0.650

1.59

Leisure-time physical activity level

        

Active*

931

73.0

345

27.0

-

-

-

-

Inactive

811

65.8

421

34.2

0.000

1.40

1.18

1.66

cOR –Crude odds ratio.

*- Reference group.

- Scores of 0–7 (normal).

‡ − Scores of ≥ 8 (mild, moderate, severe, extremely severe).

Stress was significantly associated with sex, HbA1c, co-morbidity, diabetes in the family, psychiatric illness in the family, life events and alcohol consumption (Table 4).
Table 4

Frequency distribution of respondents by stress status and socio-demographic characteristics and other selected variables

Variables

Stress symptoms

P

cOR

95% CI

No (n)

(%)

Yes (n) ‡

(%)

Lower

Upper

Age (Years)

    

0.336

   

30 – 39*

133

84.2

25

15.8

-

-

-

-

40 - 49

408

88.5

53

11.5

0.159

0.691

0.413

1.156

50 - 59

784

88.2

105

11.8

0.160

0.713

0.444

1.144

60 – 69

627

86.1

101

13.9

0.525

0.857

0.532

1.380

70 - 79

214

89.9

24

10.1

0.092

0.597

0.327

1.088

≥ 80

28

82.4

6

17.6

0.793

1.140

0.428

3.037

Sex

        

Male*

870

89.2

105

10.8

-

-

-

-

Female

1324

86.4

209

13.6

0.035

1.31

1.02

1.68

Ethnicity

    

0.077

   

Malay*

1135

88.5

147

11.5

-

-

-

-

Chinese

387

88.4

51

11.6

0.920

1.02

0.73

1.43

Asian Indian

671

85.3

116

14.7

0.030

1.34

1.03

1.73

Educational Level

    

0.219

   

None

253

88.8

32

11.2

0.484

1.211

0.709

2.068

Primary education

824

87.5

118

12.5

0.155

1.371

0.888

2.116

Secondary education

849

86.2

136

13.8

0.051

1.533

0.998

2.355

Tertiary education*

268

90.5

28

9.5

-

-

-

-

Monthly household income (MHI) in Malaysian Ringgit (MYR)

    

0.088

   

< 1,000

600

85.2

104

14.8

0.051

1.419

1.00

2.02

1,000 -< 3,000

1152

88.1

156

11.9

0.539

1.108

0.80

1.54

≥ 3,000*

442

89.1

54

10.9

-

-

-

-

Marital Status

    

0.573

   

Never married

62

87.3

9

12.7

0.906

1.04

0.51

2.13

Divorced/widowed/separated

1798

87.8

250

12.2

0.292

1.18

0.87

1.62

Married *

334

85.9

55

14.1

-

-

-

-

Current Job Status

    

0.152

   

Unemployed

436

85.0

77

15.0

0.043

1.40

1.01

1.93

Housewives

679

86.9

102

13.1

0.258

1.19

0.88

1.60

Retired

328

89.1

40

10.9

0.855

0.96

0.65

1.43

Employed*

751

88.8

95

11.2

-

-

-

-

BMI (kg/m 2 )

    

0.440

   

< 25.0*

676

86.8

103

13.2

-

-

-

-

≥ 25.0

915

88.5

119

11.5

0.271

0.85

0.64

1.13

≥ 30.0

603

86.8

92

13.2

0.993

1.00

0.74

1.35

Abdominal Obesity

        

No*

475

88.0

65

12.0

-

-

-

-

Yes

1719

87.3

249

12.7

0.70

1.06

0.79

1.42

Sr. Cholesterol level (mmol/l)

        

<5.2*

1545

87.4

222

12.6

-

-

-

-

≥ 5.2

649

87.6

92

12.4

0.919

0.99

0.76

1.28

HbA1c level (%)

        

≤8.5*

1376

89.5

161

10.5

-

-

-

-

>8.5

817

84.2

153

15.8

0.000

1.60

1.26

2.03

Duration of Diabetes (years)

        

< 2

182

88.3

24

11.7

-

-

-

-

≥ 2*

2012

87.4

290

12.6

0.694

0.915

0.59

1.43

Co-morbidity

        

No*

477

90.0

53

10.0

-

-

-

-

Yes

1717

86.8

261

13.2

0.049

1.37

1.00

1.87

Psychiatric illness in family

        

No*

2179

87.7

305

12.3

-

-

-

-

Yes

15

62.5

9

37.5

0.001

4.28

1.86

9.88

Diabetes in family

        

No*

594

89.9

67

10.1

-

-

-

-

Yes

1600

86.6

247

13.4

0.031

1.37

1.04

1.82

Life events within the past 6 months

        

No*

1227

89.4

146

10.6

-

-

-

-

Yes

967

85.2

168

14.8

0.002

1.46

1.15

1.85

Smoking status

    

0.836

   

Non smoker*

1824

87.3

265

12.7

-

-

-

-

Former smoker

142

88.8

18

11.2

0.743

0.94

0.63

1.39

Current smoker

228

88.0

31

12.0

0.598

0.87

0.53

1.45

Current drinker

        

No*

2119

87.8

295

12.2

-

-

-

-

Yes

75

79.8

19

20.2

0.023

1.82

1.08

3.05

Leisure-time physical activity level

        

Active*

1112

87.1

164

12.9

-

-

-

-

Inactive

1082

87.8

150

12.2

0.608

0.94

0.74

1.19

cOR –Crude odds ratio.

*- Reference group.

- Scores of 0–14 (normal).

‡ − Scores of ≥ 15 (mild, moderate, severe, extremely severe).

Variables with a p value of < 0.25 in the bivariate analyses and thought to be important risk factors of depression, anxiety and stress were entered into the multivariate model. The forward likelihood ratio (LR) method was used to predict the associated variables for depression, anxiety and stress symptoms in three separate models. The presence of interaction between the explanatory variables was assessed prior to determining the final model.

In the final model six variables i.e., sex, ethnicity, marital status, duration of diabetes, psychiatric illness in the family and alcohol consumption were found to be predictors of depression (Table 5). The strongest predictor was psychiatric illness history with an adjusted odds ratio (aOR) of 2.8 times followed by marital status (aOR 2.5-2.1) and current alcohol consumption (aOR 1.8). Individuals with diabetes of less than two years duration were 1.6 times more likely to have depressive symptoms than individuals with diabetes of longer duration while females and Asian Indians were 1.4 times more likely to have depressive symptoms compared to males and Malay diabetic individuals.
Table 5

Multiple logistic regression model predicting depression, anxiety and stress symptoms among type II diabetic outpatients

Variable

Categories

B

S.E.

Wald

p-value

aOR

95% CI

       

Lower

Upper

Depression

Constant

 

−2.194

0.226

94.045

0.000

   

Ethnicity

   

6.539

0.038

   
 

Malay*

-

-

-

-

-

-

-

 

Chinese

−0.002

0.185

0.000

0.993

1.00

0.70

1.44

 

Asian Indian

0.337

0.142

5.619

0.018

1.40

1.06

1.85

Sex

Male*

-

-

-

-

-

-

-

 

Female

0.350

0.145

5.828

0.016

1.42

1.068

1.89

Marital Status

   

29.490

0.000

   
 

Never married

0.931

0.300

9.656

0.002

2.54

1.41

4.57

 

Divorced/widowed/separated

0.735

0.153

22.935

0.000

2.09

1.54

2.82

 

Married*

-

-

-

-

-

-

-

Psychiatric illness in family

No*

-

-

-

-

-

-

-

 

Yes

1.014

0.469

4.685

0.030

2.76

1.10

6.91

Duration of diabetes (years)

< 2

0.452

0.205

4.840

0.028

1.57

1.05

2.35

 

≥ 2*

-

-

-

-

-

-

-

Current drinker

No*

-

-

-

-

-

-

-

 

Yes

0.610

0.312

3.823

0.051

1.84

1.00

3.39

Anxiety

Constant

 

−1.474

0.293

25.217

0.000

0.229

  

Age Group (yrs)

   

11.180

0.048

   
 

30 – 39*

-

-

-

-

-

-

-

 

40 - 49

−0.530

0.201

6.955

0.008

0.59

0.40

0.87

 

50 - 59

−0.402

0.188

4.559

0.033

0.67

0.46

0.97

 

60 – 69

−0.468

0.202

5.378

0.020

0.63

0.42

0.93

 

70 - 79

−0.138

0.238

0.337

0.562

0.87

0.55

1.39

 

≥ 80

−0.400

0.416

0.922

0.337

0.67

0.30

1.52

Current Job Status

   

17.848

0.001

   
 

Retired

0.201

0.160

1.579

0.209

1.22

0.89

1.67

 

Unemployed

0.220

0.140

2.448

0.118

1.25

0.95

1.64

 

Housewives

0.474

0.158

9.020

0.003

1.61

1.18

2.19

 

Employed*

-

-

-

-

-

-

-

HbA1c level (%)

≤8.5*

-

-

-

-

-

-

-

 

>8.5

0.298

0.091

10.649

0.001

1.35

1.13

1.61

Psychiatric illness in family

No*

-

-

-

-

-

-

-

 

Yes

0.876

0.419

4.368

0.037

2.40

1.06

5.46

Life events

No*

-

-

-

-

-

-

-

 

Yes

0.324

0.089

13.241

0.000

1.38

1.16

1.65

Physical Activity Status

Inactive

0.304

0.090

11.542

0.001

1.36

1.13

1.62

 

Active*

-

-

-

-

-

-

-

Stress

Constant

 

−2.832

0.193

215.60

0.000

0.059

  

Sex

Male*

-

-

-

-

-

-

-

Female

0.312

0.134

5.397

0.020

1.37

1.05

1.78

HbA1c level (%)

≤8.5*

-

-

-

-

-

-

-

>8.5

0.493

0.123

16.119

0.000

1.64

1.29

2.08

Co-morbidity

No*

-

-

-

-

-

-

-

Yes

0.345

0.161

4.561

0.033

1.41

1.029

1.94

Psychiatric illness in family

No*

-

-

-

-

-

-

-

Yes

1.435

.434

10.931

0.001

4.20

1.79

9.83

Life events

No*

-

-

-

-

-

-

-

Yes

0.292

0.123

5.592

0.018

1.34

1.05

1.71

Current drinker

No*

-

-

-

-

-

-

-

Yes

0.775

0.282

7.580

0.006

2.17

1.25

3.77

aOR –adjusted odds ratio.

*- Reference group.

In terms of anxiety (Table 5), age group, job status, HbA1c, family history of psychiatric illness, life events and leisure-time physical activity remained significant in the final model, while for stress five variables namely sex, HbA1c, co-morbidity, psychiatric illness in the family, life events and alcohol consumption were found to be significant contributors. Individuals with a family history of psychiatric illness were 2.4 times more likely to report anxiety. Anxiety was 1.4 times more likely in respondents experiencing life events, those physically inactive and with an HbA1c level of >8.5%. All diabetics who were not gainfully employed were 1.2-1.6 times more likely of experiencing anxiety.

Psychiatric illness in the family was the strongest predictor of stress having aOR of 4.2 followed by current alcohol drinkers with an aOR of 2.2. Having a highly undesirable level of HbA1c was associated with at least 1.6 times the odds of stress. Female diabetics and those with co-morbidity were 1.4 times more likely to report stress after controlling for confounders.

There was also significant correlation (p < 0.01) between depression, anxiety and stress symptoms (r = 0.360 for depression and anxiety, r =0.547 for depression and stress and r = 0.504 for anxiety and stress).

Discussion

Depression, anxiety and stress

This study showed that the prevalence of depression, anxiety and stress symptoms were 11.5%, 30.5% and 12.5% respectively among Type II Diabetic outpatients in the Klang Valley, Malaysia. The prevalence of anxiety in this study was almost three fold more than that of depression and this is in keeping with current literature in which anxiety rates are frequently higher than depression [3942].

Our findings concur with other chronic disease models such as chronic obstructive pulmonary disease (COPD), whereby a study by Dahlen & Janson found that 12% and 37% of respondents with asthma and COPD had probable depression and anxiety respectively [43].

The depressive symptom rates we found are also comparable to studies in rural America (15.8%) [44], the UAE (12.5%) [45] and Germany (10.2%) [11]. Conversely, several studies among diabetic patients had found higher rates than our study [39, 40, 46]. A study in Qatar using the same instrument as ours, i.e., DASS 21 found more than half of the diabetics have depressive, anxiety and stress symptoms [47]. The sex specific depression rates in our study were found to be within the estimated range in the general population. The differences in the rates of depression, anxiety and stress symptoms between our study and others may be attributed to differences in the screening or diagnostic instruments used, the socio-cultural differences of different populations and also the sample size of the subjects. In particular, the study from Qatar had a smaller sample size of 1788.

Our study revealed that sex, ethnicity, marital status, duration of diabetes, psychiatric illness in the family and alcohol consumption were predictors of depression. These findings are consistent with other studies which also found sex [9, 39, 40, 48, 49], ethnic minority groups [50] and duration of diabetes [47] significantly associated with depression among diabetics. It is not surprising that females have a higher prevalence and risk of depression compared to males. Many factors have been implicated for this gender difference including socio-cultural and biological factors [51]. As for ethnicity, minority ethnic groups have been found to have higher depression rates as quoted in other studies [52, 53]. It could be theorized that Asian Indians being the minority are more likely than Malays who form the majority to be exposed to a gamut of psychosocial stressors such as enhanced socioeconomic constraints, poor education and perceived discrimination. Consequently, these issues might augment distress thereby increasing the levels of depression among this group of minority. Similar findings and explanations were cited in a community based cross-sectional study in the United States comparing depression and anxiety in respondents having insomnia and respondents without among the majority Caucasians and minority African American. In that study, Taylor et al. [54] established that African Americans were more likely to have clinically significant depression and anxiety. This was attributable to the plausible exposure to greater array of stressors in the form of discrimination, socioeconomic adversities and enhanced caregiver burden for African Americans as compared to Caucasians.

Generally, it is recognized that being married is associated with less psychiatric morbidity including depression [5557]. Our finding of previously married and never married individuals being associated with depressive symptoms was compatible with a study by Aqbir et al. [48]. It is very likely that having a partner or spouse in a stable marriage offers emotional stability as well as shared burden in coping with challenges.

Incidentally a duration of less than 2 years of having diabetes was a predictor of depressive symptoms in this study. This may be attributed to inadequate or inefficient coping skills of managing diabetes by the respondents within the relatively short period since diagnosis. A related study conducted in Bahrain affirmed an association between duration of diabetes and depressive symptoms [58].

Additionally, this study elucidated the strongest predictor of depressive symptoms was having a family history or family member with psychiatric illness. It is recognized that mental illnesses in general tend to run within families [59]. In addition, in an Asian society such as ours, the responsibility of the family in caring for an ill member whether physically, emotionally or financially is very much entrenched in the culture. Hence, the caregiver’s burden is occasionally translated into physical and mental health adversities such as depression [60, 61].

In terms of alcohol consumption, our study showed that current drinking was an independent risk factor for depression albeit marginally. Several studies have established such an association [41, 42, 62].

For anxiety, our study demonstrated that having a family history of psychiatric illness was the strongest predictor. The finding is not surprising for the same reasons mentioned as for depression. That an elevated HBA1c level was an independent risk factor of anxiety in our study is also echoed by a similar association between blood glucose level and anxiety in a Mexican population [40].

With reference to current job status, this study noted that housewives and those unemployed were at risk of reporting anxiety symptoms than those who were gainfully employed. It is likely that unemployed persons lack feelings of stability and this could contribute to feelings of anxiety. However, further research is needed to show the reasons for our finding.

In this present era of modernization, anxiety has considerable influence upon the quality of life. Balancing work, family and leisure time is a challenge for both working men and women nowadays. If there was a life event preceding which could upset this delicate balance, there would definitely be an increased predilection to develop anxiety in the affected individuals. Our findings concur with several other studies conducted in this area [63, 64].

Physical activity has been shown to promote feelings of well being. Our findings harmonize with other studies showing association between physical inactivity and anxiety symptoms [39, 65]. Furthermore, regular physical activity has revealed a reduction of anxiety symptoms in those who already suffer from this disorder [66].

Our data inferred that having a family member with psychiatric illness was the strongest predictor of stress. Once again caring for a family member who has a chronic illness like mental disorders is indeed a challenging task that could increase the possibilities of adversities [60, 61].

Pertaining to alcohol consumption, current drinkers were strongly associated with stress symptoms. Studies have shown that drinking is used as means of coping with life’s stresses [67]. Child’s et al. have suggested a bidirectional relationship between alcohol use and stress [68].

Experiencing life events is inherently stressful and thus can complicate any stress level already existing in an individual [69]. Lyod et al. [70] have noted that recent severe stressors were associated with poorer glycemic control while another study found a significant correlation between stress and HbA1c [71]. Hence, our findings of life events and elevated HbA1c levels being independently associated with stress symptoms are consistent. Females were found to be at risk of stress in this study. The finding is in accordance with current literature on gender differences and stress symptoms [7274]. We did not find any association between other socio-demographic, lifestyle and clinical factors with stress symptoms.

The strength of our study lies in its large sample size and the sampling method. However, there are also limitations which need to be considered. Firstly, this being a cross sectional study does not allow for cause and effect relationships to be studied. Secondly, the DASS 21 questionnaire is only a screening tool and not diagnostic of specific psychiatric disorders. There is also the possibility of recall biases from respondents, however this was minimized by limiting the recall period to 1 week prior to the interview using DASS 21. Information such as age, past medical history and types of medication was also verified with medical records where applicable. A point to note is that the low prevalence of family history of psychiatric illness elicited from the study could be a result of under reporting as psychiatric illness is still viewed with suspicion and stigma in our society.

As part of a long term and holistic diabetes care management, we recommend that screening for depression, anxiety and stress symptoms be conducted at regular intervals for Type II diabetics with vulnerable characteristics as mentioned above. Policies need to be in place along with appropriate intervention so that these vulnerable individuals receive optimal and timely mental health care, thus translating into better overall health outcomes.

Conclusions

The study showed that while the prevalence of depression and stress symptoms was just over 10%, almost a third were classified as anxious. As these symptoms are highly correlated, they should be considered together when managing diabetic patients. Our findings could help primary care physicians identify high risk diabetics for screening of mental disorders. A family history of psychiatric illness was found to be a common predictor for all three symptoms. Females, current alcohol drinkers, experiencing recent life events and poor glycemic control were the other common predictors of at least two of these symptoms.

Declarations

Acknowledgements

The authors wish to thank the Director General of the Ministry of Health Malaysia for his permission in publishing the study findings.

Authors’ Affiliations

(1)
Institute for Public Health, Ministry of Health
(2)
Faculty of Medicine, Universiti Teknologi MARA
(3)
Department of Social and Preventive Medicine, University of Malaya

References

  1. World Health Organization (WHO): The global burden of disease: 2004 update. 2008, Geneva, Switzerland: World Health OrganizationGoogle Scholar
  2. Institute for Public Health: The third national health and morbidity survey (NHMS III) 2006. Executive summary. Ministry of health Malaysia. 2008, Kuala Lumpur: Institute for Public Health (IPH)Google Scholar
  3. Institute for Public Health (IPH): National health and morbidity survey 2011 (NHMS 2011). volume II: Non communicable diseases. 2011, Kuala Lumpur: Institute for Public Health (IPH)Google Scholar
  4. Division of Burden of Disease, Institute for Public Health: Malaysian burden of disease and injury study. Health prioritization: burden of disease approach. 2006, Kuala Lumpur: Institute for Public Health (IPH), Ministry of Health MalaysiaGoogle Scholar
  5. Mental health and chronic physical illnesses: The need for continued and integrated care. 2010, Vancouver: World Federation for Mental HealthGoogle Scholar
  6. IDF Clinical Guidelines Task Force: Global Guideline for Type 2 diabetes. 2005, Brussels: International Diabetes FederationGoogle Scholar
  7.  : Coping with chronic illnesses and depression. http://www.webmd.com/depression/guide/chronic-illnesses-depression, Accessed on 27 August 2012
  8. Goldney RD, Phillips PJ, Fisher LJ, Wilson DH: Diabetes, depression, and quality of life. A population study Diabetes Care. 2004, 5 (27): 1066-1070.View ArticleGoogle Scholar
  9. Anderson RJ, Freedland KE, Clouse RE, Lustman P: The prevalence of co morbid depression in adults with diabetes: a meta-analysis. Diabetes Care. 2001, 24: 1069-1078. 10.2337/diacare.24.6.1069.View ArticlePubMedGoogle Scholar
  10. Nouwen A, Winkley K, Twisk J, Lloyd CE, Peyrot M, Ismail K, Pouwer F, for the European Depression in Diabetes (EDID) Research Consortium: Type 2 diabetes mellitus as a risk factor for the onset of depression: a systematic review and meta-analysis. Diabetologia. 2010, 53 (12): 2480-2486. 10.1007/s00125-010-1874-x.View ArticlePubMedPubMed CentralGoogle Scholar
  11. Kruse J, Norbert S, Wolfgang T: On the association between diabetes and mental disorders in a community sample. 2003, Diabetes Care: Results from the German National Health Interview and Examination Survey, 26(6)-Google Scholar
  12. Egede LE, Zheng D, Simpon K: Comorbid depression is associated with increased health care use and expenditures in individuals with diabetes. Diabetes Care. 2002, 25: 464-470. 10.2337/diacare.25.3.464.View ArticlePubMedGoogle Scholar
  13. Finkelstein EA, Bray JW, Chen H, Larson MJ, Miller K, Tompkins C, Keme A, Manderscheid R: Prevalence and costs of major depression among elderly claimants with diabetes. Diabetes Care. 2003, 26: 415-420. 10.2337/diacare.26.2.415.View ArticlePubMedGoogle Scholar
  14. Subramaniam M, Sum CF, Pek E, Stahl D, Verma S, Liow P, Chua H, Abdin E, Chong S: Comorbid depression and increased health care utilization in individuals with diabetes. Gen Hosp Psychiatry. 2009, 31 (3): 220-224. 10.1016/j.genhosppsych.2009.01.001.View ArticlePubMedGoogle Scholar
  15. Lustmann PJ, Anderson RJ, Freedland KE, De Groot M, Carney RM, Clouse RE: Depression and poor glycemic control:a meta-analytic review of the literature. Diabetes Care. 2000, 23: 934-942. 10.2337/diacare.23.7.934.View ArticleGoogle Scholar
  16. Lustmann PJ, Clouse RE: Depression in diabetic patients: the relationship between mood and glycemic control. J Diabetes Complications. 2005, 19: 113-122.Google Scholar
  17. Anderson RJ, Grigsby AB, Freedland KE, de Groot M, McGill JB, Clouse RE, Lustman PJ: Anxiety and poor glycemic control: a meta-analytic review of the literature. Int J Psychiatry Med. 2002, 32 (3): 235-247. 10.2190/KLGD-4H8D-4RYL-TWQ8.View ArticlePubMedGoogle Scholar
  18. de Groot M, Anderson R, Freedland KE, Clouse RE, Lustman PJ: Association of depression and diabetes complications: a meta-analysis. Psychosom Med. 2001, 63: 619-630.View ArticlePubMedGoogle Scholar
  19. Bruce DG, Davis WA, Starkstein SE, Davis TM: A prospective study of depression and mortality in patients with type 2 diabetes: the Fremantle diabetes study. Diabetologia. 2005, 48 (12): 2532-2539. 10.1007/s00125-005-0024-3.View ArticlePubMedGoogle Scholar
  20. Egede LE: Diabetes, major depression and functional disability among U.S. adults. Diabetes Care. 2004, 27: 421-428. 10.2337/diacare.27.2.421.View ArticlePubMedGoogle Scholar
  21. Schmitz N, Wang JL, Malla A, Lesage A: Joint effect of depression and chronic conditions on disability: results from a population-based study. Psychosom Med. 2007, 69: 332-338. 10.1097/PSY.0b013e31804259e0.View ArticlePubMedGoogle Scholar
  22. Ciechanowski PS, Katon WJ, Russo JE: Depression and diabetes: impact of depressive symptoms on adherence, function and costs. Arch Intern Med. 2000, 160: 3278-3285. 10.1001/archinte.160.21.3278.View ArticlePubMedGoogle Scholar
  23. Kilbourne AM, Reynolds CF, Good CB, Sereika SM, Justice AC, Fine MJ: How does depression influence diabetes medication adherence in older patients?. Am J Geriatr Psychiatry. 2005, 13 (3): 202-210.View ArticlePubMedGoogle Scholar
  24. Brown GC, Brown MM, Sharma S, Brown H, Gozum M, Denton P: Quality of life associated with diabetes mellitus in an adult population. J Diabetes Complications. 2000, 14 (1): 18-24. 10.1016/S1056-8727(00)00061-1.View ArticlePubMedGoogle Scholar
  25. Das-Munshi J, Stewart R, Khalida I, Bebbington PE, Jenkins R, Prince MJ: Diabetes, common mental disorders, and disability: findings from the UK national. Surv Psychiatr Morbidity Psychosom Med. 2007, 69: 543-550.Google Scholar
  26. Black SA, Markides KS, Ray LA: Depression increased incidence of adverse outcomes in older Mexican Americans with tuype 2 diabetes. Diabetes Care. 2003, 26: 2822-2828. 10.2337/diacare.26.10.2822.View ArticlePubMedGoogle Scholar
  27. Zhang X, Norris SL, Gregg EW, Cheng YJ, Beckles G, Kahn HS: Depressive symptoms, and mortality among person with and without diabetes. Am J Epidemiol. 2005, 161: 652-660. 10.1093/aje/kwi089.View ArticlePubMedGoogle Scholar
  28. Katon WJ, Rutter C, Simon G, Lin EHB, Ludman E, Ciechanowski P, Kinder L, Young B, Korff MV: The association of comorbid depression with mortality in patients with type 2 diabetes. Diabetes Care. 2004, 28: 2668-2672.View ArticleGoogle Scholar
  29. Egede LE, Nietert P, Zheng D: Depression and all-cause and coronary heart disease mortality among adults with and without diabetes. Diabetes Care. 2005, 28: 1339-1345. 10.2337/diacare.28.6.1339.View ArticlePubMedGoogle Scholar
  30. Bogner HR, Morales KH, Post EP, Bruce ML: Diabetes, depression, and death. A randomized controlled trial of a depression treatment program for older adults based in primary care (PROSPECT). Diabetes Care. 2007, 30 (12): 3005-3010. 10.2337/dc07-0974.View ArticlePubMedPubMed CentralGoogle Scholar
  31.  : Klang Valley. http://www.freebase.com/view/en/klang_valley, Accessed on 20 January 2013
  32. Naing L, Winn T, Rusli BN: Sample size calculator for prevalence studies, Version 1.0.01. 2006, http://www.kck.usm.my/ppsg/stats_resources.htm,Google Scholar
  33. Dupont WD, Plummer W: PS power and sample size program available for free on the Internet. Controlled Clin Trials. 1997, 18: 274-10.1016/S0197-2456(97)00074-3.View ArticleGoogle Scholar
  34. Musa R, Fadzil MA, Zain Z: Translation, validation and psychometric properties of Bahasa Malaysia version of the Depression, Anxiety and Stress Scales (DASS). ASEAN J Psychiatr. 2007, 8 (2): 82-89.Google Scholar
  35. Lovibond SH, Lovibond PF: Manual for the depression anxiety stress scales. Volume 2nd Edition. 1995, Sydney: Psychology FoundationGoogle Scholar
  36. World Health Organization: Obesity: preventing and managing the global epidemic. Report of a WHO consultation (WHO technical report series, 894). WHO technical report series. Volume 894. 2000, Geneva: World Health OrganizationGoogle Scholar
  37. Weight and waist measurement: tools for adults. 2008, U.S Department of Health and Human Services, National Institute of Diabetes and Digestive and Kidney DiseaseGoogle Scholar
  38. WHO/IOTF/IASO: The Asia pacific perspective: redefining obesity and its treatment. 2000, Hong Kong: Health Communications Australia Pty LimitedGoogle Scholar
  39. Khuwaja AK, Lalani S, Dhanani R, Azam SI, Rafique G, White F: Anxiety and depression among outpatients with type 2 diabetes: a multi-centre study of prevalence and associated factors. Diabetol & Metab Syndr. 2010, 2 (72): 2-7.Google Scholar
  40. Tovilla-Zárate C, Juárez-Rojop I, Peralta Jimenez Y, Jiménez MA, Vázquez S, Bermúdez-Ocaña D, Ramón-Frías T, Genis Mendoza AD, García SP, Narváez LL: Prevalence of anxiety and depression among outpatients with type 2 diabetes in the Mexican population. PLoS One. 2012, 7 (5): e36887-10.1371/journal.pone.0036887.View ArticlePubMedPubMed CentralGoogle Scholar
  41. Tann SS, Yabiku ST, Okamoto SK, Yanow J: TriADD: the risk for alcohol abuse, depression, and diabetes multimorbidity in the American Indian and Alaskan native population. Am Indian Alsk Native Ment Health Res. 2007, 14 (1): 1-23.View ArticlePubMedPubMed CentralGoogle Scholar
  42. Collins MM, Corcoran P, Perry IJ: Anxiety and depression symptoms in patients with diabetes. Diabet Med. 2009, 26 (2): 153-161. 10.1111/j.1464-5491.2008.02648.x.View ArticlePubMedGoogle Scholar
  43. Dahlén I, Janson C: Anxiety and depression Are related to the outcome of emergency treatment in patients with obstructive pulmonary disease. Chest. 2002, 122 (5): 1633-1637. 10.1378/chest.122.5.1633.View ArticlePubMedGoogle Scholar
  44. Bell RA, Smith SL, Arcury TA, Snively BM, Stafford JM, Quandt SA: Prevalence and correlates of depressive symptoms among rural older African Americans, native Americans, and whites with diabetes. Diabetes Care. 2005, 2: 823-829.View ArticleGoogle Scholar
  45. Sulaiman N, Hamdan A, Tamim H, Mahmood DA, Young D: The prevalence and correlates of depression and anxiety in a sample of diabetic patients in Sharjah United Arab Emirates. BMC Fam Pract. 2010, 11 (80): http://www.biomedcentral.com/1471-2296/11/80,Google Scholar
  46. De Groot M, Doyle T, Hockman E, Wheeler C, Pinkerman B, Shubrook J, Gotfired R, Schwartz F: Depression among type 2 diabetes rural applachian clinic attendees. Diabetes Care. 2007, 30 (6): 1602-1604. 10.2337/dc06-1599.View ArticlePubMedPubMed CentralGoogle Scholar
  47. Abdulbari B, OAA Al-Hamaq A, Dafeeah EE: High prevalence of depression, anxiety and stress symptoms among diabetes mellitus patients. Open Psychiatr J. 2011, 5: 5-12. 10.2174/1874354401105010005.View ArticleGoogle Scholar
  48. Agbir TM, Audu MD, Adebowale TO, Goar SG: Depression among medical outpatients with diabetes: A cross-sectional study at Jos University Teaching Hospital, Jos. Nigeria Ann Afr Med. 2010, 9: 5-10. 10.4103/1596-3519.62617.View ArticlePubMedGoogle Scholar
  49. Nichols GA, Brown JB: Unadjusted and adjusted prevalence of diagnosed depression in type 2 diabetes. Diabetes Care. 2003, 26 (3): 744-749. 10.2337/diacare.26.3.744.View ArticlePubMedGoogle Scholar
  50. Pouwer F, Geelhoed-Duijvestijn PHLM, Tack CJ, Bazelmans E, Beekman A-J, Heine RJ, Snoek FJ: Prevalence of comorbid depression is high in out-patients with Type 1 or Type 2 diabetes mellitus. Results from three out-patient clinics in the Netherlands. Diabet Med. 2010, 27 (2): 217-224. 10.1111/j.1464-5491.2009.02903.x.View ArticlePubMedGoogle Scholar
  51. Piccinelli M, Wilkinson G: Gender differences in depression: critical review. Br J Psychiatr. 2000, 177: 486-492. 10.1192/bjp.177.6.486.View ArticleGoogle Scholar
  52. Dunlop DD, Song J, Lyons JS, Manheim LM, Chang RW: Racial/ethnic differences in rates of depression among preretirement adults. Am J Public Health. 2003, 93 (11): 1945-1952. 10.2105/AJPH.93.11.1945.View ArticlePubMedPubMed CentralGoogle Scholar
  53. Fisher L, Laurencin G, Chesla CA, Skaff MM, Mullan JT, Gardiner PS, Chun Kevin M: Depressive affect among four ethnic groups of male patients with type 2 diabetes. Diabetes Spectr. 2004, 17 (4): 215-219. 10.2337/diaspect.17.4.215.View ArticleGoogle Scholar
  54. Taylor DJ, Lichstein KL, Durrence HH, Reidel BW, Bush AJ: Epidemiology of insomnia, depression, and anxiety. Sleep. 2005, 28 (11): 1457-1464.PubMedGoogle Scholar
  55. St John PD, Montgomery PR: Marital status, partner satisfaction, and depressive symptoms in older men and women. Can J Psychiatr. 2009, 54 (7): 487-492.Google Scholar
  56. Afifi TO, Cox BJ, Enns MW: Mental health profiles among married, never-married, and separated/divorced mothers in a nationally representative sample. Soc Psychiatry Psychiatr Epidemiol. 2006, 41: 122-129. 10.1007/s00127-005-0005-3.View ArticlePubMedGoogle Scholar
  57. Stutzer A, Bruno SF: Does marriage make people happy, or do happy people get married?. J Socio Econ. 2006, 35: 326-347. 10.1016/j.socec.2005.11.043.View ArticleGoogle Scholar
  58. Almawi W, Tamim H, Al-Sayed N, Arekat MR, Al-Khateeb GM, Baqer A, Tutanji HCK: Association of comorbid depression, anxiety and stress disorders with type 2 diabetes in Bahrain, a country with a very high prevalence of type 2 diabetes. J Endocrinol Invest. 2008, 31: 1020-1024.View ArticlePubMedGoogle Scholar
  59. Barlow-Stewart K, Emery J, Metcalfe S: Psychiatric conditions. Genetics in family medicine; the Australian handbook of general practitioners. 2007, Canberra: Biotechnology Australia, Commonwealth Department of Industry, Tourism and Resources, 269-274.Google Scholar
  60. Bookwala J, Yee JL, Schulz R: Caregiving and detrimental mental and physical health outcomes. 2000, New York: KluwerGoogle Scholar
  61. Vanderwerker LC, Laff RE, Kadan-Lottick NS, McColl S, Prigerson HG: Psychiatric disorders and mental health service Use among caregivers of advanced cancer patients. J Clin Oncol. 2005, 23 (28): 6899-6907. 10.1200/JCO.2005.01.370.View ArticlePubMedPubMed CentralGoogle Scholar
  62. Graham K, Massak A, Demers A, Rehm J: Does the association between alcohol consumption and depression depend on how they are measured?. Alcohol Clin Exp Res. 2007, 31 (1): 78-88. 10.1111/j.1530-0277.2006.00274.x.View ArticlePubMedGoogle Scholar
  63. Krantz G, Östergren PO: Double exposure: the combined impact of domestic responsibilities and job strain on common symptoms in employed Swedish women. Eur J Public Health. 2001, 11: 413-419. 10.1093/eurpub/11.4.413.View ArticlePubMedGoogle Scholar
  64. Romosan F, Lenci M, Stoica I, Dehelean L: Stressful life events and anxiety disorders. Timisoara Med J. 2004, 54 (1): 36-38.Google Scholar
  65. Hong X, Li J, Xu F, Tse LA, Liang Y, Wang Z, Yu IT, Griffiths S: Physical activity inversely associated with the presence of depression among urban adolescents in regional China. BMC Public Health. 2009, 9 (148): http://www.biomedcentral.com/content/pdf/1471-2458-9-148.pdf,Google Scholar
  66. Zoeller RF: Physical activity: depression, anxiety, physical activity, and cardiovascular disease: What's the connection. Am J Lifestyle Med. 2007, 1 (3): 175-180. 10.1177/1559827607300518.View ArticleGoogle Scholar
  67. Bressert S: Stress and drinking. Psych Central. 2012, http://psychcentral.com/lib/2006/stress-and-drinking/August, Accessed on 30 August 2012Google Scholar
  68. Child's E, O'Connor S, De Wit H: Bidirectional interactions between acute psychosocial stress and acute intravenous alcohol in healthy Men. Alcohol Clin Exp Res. 2011, 35 (10): 1794-1803. 10.1111/j.1530-0277.2011.01522.x.View ArticleGoogle Scholar
  69.  : The truth about stress. http://www.stress-anxiety-depression.org/print/stress/truth-about-stress.html, Accessed on 26 August 2012
  70. Lloyd CE, Dyer PH, Lancashire RJ, Harris T, Daniels JE, Barnett AH: Association between stress and glycemic control in adults with type 1 (insulin-dependent) diabetes. Diabetes Care. 1999, 22 (8): 1278-1283. 10.2337/diacare.22.8.1278.View ArticlePubMedGoogle Scholar
  71. Kramer JR, Ledolter J, Manos GN, Bayless ML: Stress and metabolic control in diabetes mellitus: methodological issues and an illustrative analysis. Ann Behav Med. 2000, 22 (1): 17-28. 10.1007/BF02895164.View ArticlePubMedGoogle Scholar
  72.  : The prevalence of depression, anxiety & stress in young adults with diabetes. http://www.ads-adea.org.au/assets/ADS-ADEA/ePosters/RickieMyszka.pdf, accessed 26 August 2012
  73. Andreou E, Alexopoulos Evangelos C, Lionis C, Varvogl L, Gnardellis C, Chrousos George P, Darviri C: Perceived stress scale: reliability and validity study in Greece. Int J Environ Res Public Health. 2011, 8: 3287-3298. 10.3390/ijerph8083287.View ArticlePubMedPubMed CentralGoogle Scholar
  74. Gender and Stress. http://www.apa.org/news/press/releases/stress/gender-stress.aspx, Accessed on 20 January 2013
  75. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2296/14/69/prepub

Copyright

© Kaur et al.; licensee BioMed Central Ltd. 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.